On Refining Twitter Lists as Ground Truth Data for Multi-community User Classification

نویسندگان

  • Ting Su
  • Anjie Fang
  • Richard McCreadie
  • Craig MacDonald
  • Iadh Ounis
چکیده

To help scholars and businesses understand and analyse Twitter users, it is useful to have classifiers that can identify the communities that a given user belongs to, e.g. business or politics. Obtaining high quality training data is an important step towards producing an effective multi-community classifier. An efficient approach for creating such ground truth data is to extract users from existing public Twitter lists, where those lists represent different communities, e.g. a list of journalists. However, ground truth datasets obtained using such lists can be noisy, since not all users that belong to a community are good training examples for that community. In this paper, we conduct a thorough failure analysis of a ground truth dataset generated using Twitter lists. We discuss how some categories of users collected from these Twitter public lists could negatively affect the classification performance and therefore should not be used for training. Through experiments with 3 classifiers and 5 communities, we show that removing ambiguous users based on their tweets and profile can indeed result in a 10% increase in F1 performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Discovering Social Circles in Ego Networks

People’s personal social networks are big and cluttered, and currently there is no good way to automatically organize them. Social networking sites allow users to manually categorize their friends into social circles (e.g. ‘circles’ on Google+, and ‘lists’ on Facebook and Twitter), however they are laborious to construct and must be updated whenever a user’s network grows. In this paper, we stu...

متن کامل

A High-Performance Model based on Ensembles for Twitter Sentiment Classification

Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...

متن کامل

Retweet networks of the European Parliament: evaluation of the community structure

*Correspondence: [email protected] Jozef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia Abstract Analyzing information from social media to uncover underlying real-world phenomena is becoming widespread. The goal of this paper is to evaluate the role of Twitter in identifying communities of influence when the ‘ground truth’ is known. We consider the European Parliament (EP) ...

متن کامل

Probabilistic Inference of Twitter Users' Age Based on What They Follow

Twitter provides an open and rich source of data for studying human behaviour at scale and is widely used in social and network sciences. However, a major criticism of Twitter data is that demographic information is largely absent. Enhancing Twitter data with user ages would advance our ability to study social network structures, information flows and the spread of contagions. Approaches toward...

متن کامل

Hunting for Spammers: Detecting Evolved Spammers on Twitter

Once an email problem, spam has nowadays branched into new territories with disruptive effects. In particular, spam has established itself over the recent years as a ubiquitous, annoying, and sometimes threatening aspect of online social networks. Due to its prevalent existence, many works have tackled spam on Twitter from different angles. Spam is, however, a moving target. The new generation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018